You are here

December 2016

Increasing Lithium Ion Safety with Semiconductors

As the world’s devices get smaller and lighter with increasing power requirements, we need batteries that can provide more power for more time. Modern lithium ion batteries are reaching incredible energy densities enabling devices and vehicles to be more efficient than ever before. All energy storage devices have some risk, however these high energy densities come with increased danger. The dangers of lithium ion batteries have garnered national media attention with the explosions of Samsung smartphones, “hoverboards”, e-cigarettes, and other consumer electronic devices. While manufacturing error contributes to battery failure, many cases of battery explosions are the result of insufficient battery management technology built into the device.
 
Previous generations of portable devices and vehicles have used nickel cadmium, nickel hydride, or lead acid batteries. These chemistries are inherently less volatile than lithium chemistry packs and do not require constant monitoring. Lithium battery packs are much more finicky, requiring protection from overcharge, over-discharge, temperature, and physical shock. While all batteries can be damaged by these factors, lithium ion batteries become volatile and will overheat, catch fire, and explode.
 

Debate in the Desert on MEMS Capacity

The MEMS and sensor market continues to be a hotbed for innovation, new opportunities and, as with most new frontiers, there are also some disparate views on market dynamics and strategies.  All this was evident at the 2016 MSIG Executive Congress last week in Scottsdale, Arizona. 
 
First, I’ll cover the pioneering and fun subjects.  In addition to the Technology Showcase demos and member presentations there were a couple of “outside-the-box” topics such as 3D-printed cars.  Co-create was the buzzword on Day 2 and was used by Local Motors General Manager, Philip Rayer, as he showed off several 3D-printed vehicle designs which reduce manufacturing time while integrating a totally digital process and open sourcing options such as an OS battery management system.  The company is co-creating an autonomous, electric car with partners such as IBM Watson, Siemens, NXP and Meridian.  Rayer challenged the audience to consolidate the MEMS and sensors into a simplified suite of assemblies and reduce the wiring necessary. 
 
Figure:  Local Motors Strati 3D-Printed Car

Source:  Local Motors
 

Twitter